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h i g h l i g h t s

� Suitable empirical forecast model was established for cities in eastern China.
� Enhanced forecast model was established for PM10 concentration.
� Ensemble PM10 concentration forecast model was established for eastern China.
� The model performance metrics are evaluated and verified.
� A comparatively high accuracy and precision were gotten with established forecast method.
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a b s t r a c t

An ensemble and enhanced PM10 (particulate matter with a diameter less than 10 mm) concentration
forecast model was established in eastern China based on data from 2005 to 2009. The enhanced model
consists of a single stepwise regression forecast model and a combined forecast model based on wavelet
decomposition and stepwise regression. Six individual forecast results were obtained with a combined
model that can predict PM10 concentrations at multiple scales. By decomposing variables into detailed and
approximated components in six scales and with the application of stepwise regression, the best-fitted
forecast models were established in each component of the different scales. Then, the predicted results
of the detail and approximation components were reconstructed in each scale as the enhanced prediction.
A regional model was established for eastern China. The accuracy rate of each forecasted result by the
regional model was calculated using testing data from 2010 based on the needs of operational forecasting.
Precision evaluationswere also performed. Acomparativelyhigher accuracywas obtainedby the combined
model. The advantage of predicting the PM10 concentrationwith the combinedmodel hadwide spatial and
temporal suitability. An enhanced forecast model was established for each city of eastern China with im-
provements, where all the predicted results in each city were evaluated by the accuracy rate and precision
validation. In each city, the best-fitted model with the highest precision was selected and combined in an
ensemble. The ensemble and enhanced forecast model had a significant improvement in accuracy rate and
the highest precision of PM10 concentration forecasting in eastern China.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Air quality is an important issue that is attracting increasingly
more attention around the world (Kurt and Oktay, 2010). Air

pollutants such as sulfuric dioxide (SO2), nitrogen dioxide (NO2),
ozone (O3) and particulate matter with a diameter less than 10 mm
(PM10) have been reported to the public using the API (air pollution
index) in many countries, especially in metropolitan areas (Jiang
et al., 2004). Particulate matter can cross the nasal passages dur-
ing inhalation, arriving at the throat and even the lungs. With long-
term exposure to PM10, the incidence of associated diseases (e.g.,
respiratory, cardiovascular disease, reduced lung function, heart
attacks) increases in human beings (Künzli et al., 2000; Bravo and
Bell, 2011). Thus, it is necessary to monitor air quality in real time
and to predict its trends.
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The PM10 concentration in the air is affected by human activities
as well asmeteorological factors (Saliba et al., 2010). Anthropogenic
sources such as automobile exhaust, industrial discharges, fossil
fuel combustion and coal burning are the main sources of PM10
(Querol et al., 2002; Contini et al., 2010; Salvador et al., 2011).
Furthermore, PM10 can be transported in the air and deposited in
other places through atmospheric motion and precipitation (Singh,
1995; Senaratne et al., 2005). Therefore, many real-timemonitoring
stations should be established in different cities, and even in
different functional areas within a city, to ensure area representa-
tion. However, such a project would be complex, costly and limited
in terms of spatio-temporal coverage (Qu et al., 2010). Satellite-
derived data are an important source and can help compensate
for this limitation (Mishchenko et al., 2007; Kharol et al., 2011).

Based on prior knowledge, many studies have focused on fore-
casting PM10. Two types of methods (deterministic and statistical)
are generally used. Deterministic method employs meteorological,
emission and chemistry models (Zhang, 2004; Bruckman, 1993;
Coats, 1996; Lurmann, 2000; Jeong et al., 2011), which can simulate
the discharge of a pollutant, the transfer and diffusion process, the
removal process with a limited number of monitoring stations in
terms of animated figures (Baklanov et al., 2008; Kim et al., 2010).
However, the simulation results suffer from low precision (Vautard
et al., 2007; Stern et al., 2008). Therefore, statistical methods are
more appropriate for air quality forecasting (Manders et al., 2009).

Statistical methods such as artificial neural networks, nonlinear
regression, and multiple linear regression are widely used for par-
ticulatematter forecasting (Hooyberghs et al., 2005;Hoi et al., 2009;
Li et al., 2011).Whenusing an artificial neural network, the precision
of the simulation greatly depends on the experience of the model
designer. And there is an inherent conflict between training and
predictive ability, which can induce local extrema and overfitting.
Moreover, the simulation results are different even with the same
model and parameters. As amore stable statisticalmethod,multiple
linear regression can explain the variation in the dependent variable
as a function ofmultiple independent variables that arewidely used
for PM10 forecasting. However, redundant independent variables
can introduce collinearity. Thus, stepwise regression has an
advantage in avoid the collinearity, however, extremum events can
be neglected. Forecasting air qualitywith single stepwise regression
is insufficient for high-accuracy prediction.

Wavelet analysis is an effective method for spatio-temporal
characteristic analysis and forecasting (Kim et al., 2002; Murtagh
et al., 2004; Qiu et al., 2011). With an adjustment window,
wavelet analysis can stretch or translate the data and can focus on
each detailed part of the long time series data. It is rare that com-
bined wavelet analysis and stepwise regression forecast models are
used for air quality forecasting. Moreover, most studies have
attempted to simulate air quality using a uniform model, without
attempting to integrate different forecast models as an ensemble.

The objective of this study was to establish an ensemble and
enhanced method to forecast PM10 concentrations with higher
precision in eastern China. First, based on wavelet analysis, the
PM10, meteorological parameters and satellite-derived AOD (aero-
sol optical depth) were decomposed into detail and approximation
components in six scales with wavelet transformation. With step-
wise regression, a PM10 forecasting model of detail and approxi-
mation components at each scale was constructed. Then, as the
final forecast, the predicted results of the detail and approximation
components at each scale were reconstructed based on the theory
of wavelet decomposition. Second, single stepwise regression and a
combined forecast model were used as an enhanced regional air
quality forecast method for PM10 concentration forecasting in
eastern China. The performance of the regional model was evalu-
ated, and its spatial and temporal suitability were analyzed. Third,

the enhancedmodel was used to determine the PM10 concentration
in each city, and the best-fitted forecast model for each city was
selected and integrated as an ensemble for forecasting the PM10
concentration in eastern China. The accuracy rate and precision of
the ensemble forecast model were evaluated and compared with
the regional model.

2. Data and methods

2.1. Study area

Locating in the lower and middle reaches of the Yangtze River,
Eastern China extends from 113�E to 123�E and 23�N to 39�Nwhile
containing one municipality (Shanghai) and six provinces (Shan-
dong, Jiangsu, Zhejiang, Anhui, Jiangxi and Fujian) (Fig. 1). The
climate here is characterized by the East Asian monsoon with
typical seasonal changes, as the weather is dry and cold in winter
with high temperatures and abundant rainfall in summer. As one of
the most competitive and dynamic economic regions, Eastern
China has suffered natural environmental stress. Various types of
industries (e.g., light industry, machinery, electronics) are scattered
throughout this area. To ensure the development of the economy,
much labor and widely accessible transportation are needed.
Therefore, more attention should be paid to the environment,
especially to air quality in eastern China.

2.2. Air quality data

The air pollution index (API) of 23 cities in Eastern China from
2005 to 2010 was downloaded from the Ministry of Environmental
Protection of the People’s Republic of China. The API was selected
when particulate matter was the primary pollutant in each city. The
PM10 concentrations were calculated with the exchange formula of
API and PM10 concentration (See Part 1 in Supplement Information).

2.3. Independent data

The MODIS sensor onboard the polar-orbiting Terra and Aqua
spacecraft provides high spatial resolution observations of ocean,
land, aerosols and clouds. With the development of the MODIS
algorithms, AOD determination has greatly improved. The latest
algorithm (C005) is a significant improvement over its predecessor,
C004. In this study, the AOD at 0.55 mm from the C005 Level-2
aerosol products (Terra, MOD04; Aqua; MYD04) was obtained
from 2005/1/1 to 2010/6/30 (http://modis.gsfc.nasa.gov/), with a
spatial resolution of a 10 � 10 km pixel. The residual data were
downloaded from Eastern China Normal University (ECNU, http://
dbps.ecnu.edu.cn/data/terra/). The satellite receiving system of
ECNU was built in May 2010. The collection 005 algorithmwas also
run, and the products were processed in real time.

Four-times daily, meteorological factors, including surface
temperature, potential temperature, precipitable water, pressure,
relative humidity, sea level pressure, u-wind, v-wind, specific hu-
midity, and total cloud cover in eastern China from 2005 to 2010
were downloaded from the NCEP/NCAR Reanalysis datasets The
coordinate meteorological data of 23 cities in eastern China were
derived using the corresponding centered latitude and longitude.
The correlations between PM10 and each meteorological factor at
each of the 4 times were analyzed, and the fitted temporal mete-
orological factors were chosen.

2.4. Stepwise regression

Stepwise regression is a type of multiple linear regression that
can select the best-fitted combination of independent variables for

Y. Chen et al. / Atmospheric Environment 74 (2013) 346e359 347



Author's personal copy

dependent variable predictionwith forward-adding and backward-
deleting variables. The stepping procedure begins as an initial
model definition, with a stepped forward addition of a variable to
the previous model. The critical F value is then used to check the
eligibility of the added variable. With a new variable added, the
previous variables in the model may lose their predictive ability.
Thus, stepping criteria are used to check the significance of all the
included variables. If the variable is insignificant, then the back-
ward method is used to delete it. Forward adding and backward
deleting are repeated until no variable is added or removed. The
stepping procedure is eliminated when the optimized model is
established.

2.5. Wavelet analysis

Wavelet analysis is a useful mathematical method for data or
signals in a time series and frequencies (Torrence and Compo,1998;
Durka, 2003). Wavelet analysis can be used to reveal every detail of
the signal with shifting or dilating. A continuous wavelet transform
(CWT) can be defined as follows (Bruce et al., 2001; Mallat, 1999).

Given a mother wavelet function j(t), it belongs to L2(R) (two-
dimensional space). With shifting or dilating, the mother wavelet
produces a group of continuous wavelets as:

ja;b
�
t
� ¼ 1ffiffiffi

a
p j

�
t � b
a

�

The wavelet transformation coefficient can be expressed as:

Ff ða; bÞ ¼ jaj�1
2

ZþN

�N

f ðtÞj*
a;b

�
t � b
a

�
dt

where Ff(a,b) is the wavelet transform coefficient; j*
a;b is the con-

jugate function of ja,b; a is the frequency resolution, which refers to
the periodicity and indicates the width of the wavelet; and b is the
time parameter, which refers to shifting in the time series.

Wavelet multi-resolution analysis is a typical CWT that can
decompose a signal into separate components (detail and

approximation) and different resolutions with mother wavelets
and scaling (Mallat, 1999; Bruce et al., 2002). The scale of the signal
is usually decomposed as an a level (a ¼ 2, 4, 8, ., 2n). The detail
component is also called a high-frequency signal, and it represents
obvious and rapid changes. The approximation component is called
a low-frequency signal, and it represents coarse changes. The Sym8
wavelet was used in this study. Sym8 has been demonstrated to be
a useful mother wavelet and is more appropriate for signal
compression (Eriksson et al., 2000; Zhang et al., 2012).

2.6. Model performance evaluations

The performances of each model were evaluated by the
following metrics.

Accuracy, vacancy ratio and missing rate were calculated based
on the operational forecast,

Accuracy rate ¼ Nright

N
� 100%

Vacancy rate ¼ Nhigher

N
� 100%

Missing rate ¼ Nlower
N

� 100%

The index of agreement (IA)

IA ¼ 1�

PN
i
ðOi � PiÞ2

PN
i

���Pi � O
��þ ��Oi � O

��	2

The root mean squared error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i
ðOi � PiÞ2

N

vuuut

Fig. 1. Study area and sampling cities in eastern China.
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The mean absolute error (MAE)

MAE ¼

PN
i
jOi � Pij
N

The mean relative error (MRE)

MRE ¼ 1
N

XN
i

jOi � Pij
Oi

where Oiis the observed value, Pi is the predicted value, Ois the
average of the observed value, N is the total number of the testing
dataset, Nright is the number of the predicted pollution level in
accordancewith the observed pollution level,Nhigher is the number of
thepredictedpollution level that is higher than theobservedpollution
level, and Nlower is the number of the predicted pollution level that is
lower than the observed pollution level. The pollution level division
was according to the API (SeeTable A1 in Supplement Information).

The IA was used to measure the deviation of the predicted value
from the observed value and the observed value on average in
magnitude (Kang et al., 2005). RMSE was used to measure the
sensitivity and extremum effect of the predicted value. MAE was
used to evaluate the absolute error range of the predicted value on
average. MRE was used to reflect the specification of the predicted
value on average.

2.7. Establishment of enhanced forecast model

The data from 2005 to 2009 were selected as the training
dataset, and those from 2010 were selected as the testing dataset.

The training data were simulated with the enhanced PM10 con-
centration forecast model as shown in Fig. 2. Based on wavelet
multi-resolution analysis, sym8was used, and the a level was set as
21, 22, 23, 24, 25 and 26. Then, a dataset with six detail components
and six approximation components was obtained inMATLAB. All 13
parameters (PM10, AOD and meteorological factors) were decom-
posed into six scales (a ¼ 21, 22, 23, 24, 25, 26) with detail compo-
nents (D1 to D6) and approximation components (A1 to A6) in each
scale. Thus, 12 training datasets were obtained. Then, a PM10 fore-
cast model in each dataset was established with the corresponding
AOD and meteorological factors on the same scale and with the
same components based on stepwise regression. A total of 12 PM10
forecast models were built comprising detail components and
approximation components. According to the principle of wavelet
decomposition, the PM10 prediction was reconstructed in six scales

Fig. 2. The process of the enhanced PM10 concentration forecast model.

Table 1
Descriptive statistics of observed values and simulated values based on the regional
enhanced model.

PM10 Minimum
(mg m�3)

Maximum
(mg m�3)

Mean
(mg m�3)

Standard
deviation

Kurtosis Skewness

Observed
value

0.012 0.600 0.095 0.056 10.488 2.259

SSR 0.153 0.281 0.196 0.020 �0.145 0.306
C1 0.047 0.311 0.153 0.030 1.156 0.424
C2 0 0.252 0.055 0.025 5.067 1.424
C3 0.053 0.292 0.156 0.028 0.650 0.540
C4 0.107 0.358 0.221 0.031 1.094 0.674
C5 0.003 0.429 0.149 0.080 0.236 0.689
C6 0.003 0.432 0.158 0.081 0.097 0.542

Y. Chen et al. / Atmospheric Environment 74 (2013) 346e359 349



Author's personal copy

with combined detail and approximation components. Then, a
PM10 forecast model based on combined wavelet analysis and
stepwise regression was established. Comparing the accuracies of
the two models’ performances (PM10 forecast model with single
stepwise regression & PM10 forecast model based on combined
stepwise regression and wavelet analysis), the best performance
model for PM10 concentration forecasting was selected as an
enhanced PM10 forecast model.

3. Results and discussion

3.1. Regional model and performance evaluation

The combined model takes all the independent variable into
consideration and six datasets of PM10 predictions were obtained
(shorted as C1, C2, C3, C4, C5 and C6). On the contrary, signal
stepwise regression (abbreviated as SSR) discard surface tempera-
ture, potential temperature and pressure for two reasons. First,
wavelet analysis must consider detailed components that variables
with seldom contribution could also bring obvious effect to them.
Second, the stepwise regression has ability in eliminating the
redundant variables so it’s inefficient to consider those small con-
tributors to PM10 concentration, including surface temperature,
potential temperature and pressure.

3.1.1. Characteristics of the predicted values based on a regional
model

The characteristics of the seven sets of predicted results are
shown in Table 1 with descriptive statistics.

The observed PM10 concentrations ranged from 0.012 mg m�3

to 0.6 mg m�3, with a comparatively low average of 0.095 mg m�3,
which imply that most of the data were accumulated with low
values. The standard deviation of the observed values is 0.054. The
kurtosis and skewness of the observed values were the highest in
the eight datasets. Thus, the observed data had a leptokurtic dis-
tribution and were right-skewed, and many extreme data
appeared at the right side. The dataset of the PM10 prediction by
SSR showed that the range of the dataset was small and that the
mean value was comparatively high, which implies that the
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Fig. 3. Performance evaluation of the regional model based on the needs of opera-
tional forecasting and the index of agreement of each dataset of PM10 concentration
predictions.

Fig. 4. The precision of the enhanced regional model.
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predicted PM10 concentrations were slightly higher in total. The
lowest standard deviation implied that slight differences existed
among the predicted values, and the negative kurtosis implied that
the distribution of the predicted PM10 concentrations was smooth
and positive. The smallest skewness indicated that the predicted
values were right-skewed with few extreme values. When
comparing the observed values with the six results based on
enhanced forecast model, C2 is remarkable, with the lowest
average value. The kurtosis and skewness were higher than the
other predictions and more similar to the observed values. The
PM10 concentration predicted by C2 was very low with a few

extremum values, and the distribution of the whole prediction
dataset showed a leptokurtic distribution and was right-skewed.
The highest mean value appeared in C4. The predicted PM10 con-
centrations by C4 ranged from 0.107 to 0.358 mg m�3, with a
standard deviation of 0.031; this finding implies that there were
slight differences in the predicted values in this dataset and that
most of the data were accumulated at a higher value. The PM10
concentration prediction in C5 and C6 accumulated at high values,
and the standard deviations were higher than those of other
datasets, which implies that the data in the two datasets had
obvious discrepancies between each other.

Fig. 5. The spatial distributions of the accuracy rate, missing rate, vacancy rate and IA with the enhanced regional forecast model.

Y. Chen et al. / Atmospheric Environment 74 (2013) 346e359 351
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3.1.2. Performance evaluation of the regional model
To evaluate the PM10 concentration prediction for operational

forecasting, the predicted PM10 concentrations were converted into
a pollution index and classified into five pollution levels. The ac-
curacy rate, vacancy rate, missing rate and IA of each set of PM10
concentration predictions were calculated (Fig. 3).

The accuracy rates of the seven sets of PM10 concentrations
predicted based on the regional model were ordered as followed:
C2 (52.64%) > C5 (37.73%) > C1 (37.18%) > C3 (35.56%) > C6
(33.61%) > C4 (9.04%) > SSR (8.74%). There were two extreme
values, to which more attention should be paid in Fig. 3: one was
the missing rate of C2, and the other was the vacancy rate of SSR.
The IA of each PM10 concentration prediction was ordered as fol-
lows: C2> C3> C1> SSR> C5> C6> C4. The highest accuracy rate
appeared in C2, the same as IA. Prediction by single stepwise

regression was not well performed with the lowest accuracy rate.
The reason for this result is that the PM10 concentrations predicted
by C2 were accumulated in a lower grade and the SSR-predicted
values were accumulated in a higher grade. However, the air
quality in most of the year in eastern China had a clean grade.
Therefore, because of the higher prediction made by SSR, it
compensated for the disadvantage in predicting higher values, and
the IA of this prediction result was improved. Thus, by comparison,
we can conclude that C2 for PM10 concentration prediction was the
most suitable forecast model for eastern China in general.

To further evaluate the precision of each prediction, the RMSE,
MAE and MRE were also analyzed, as shown in Fig. 4. The results
show that the precision of the forecast was greatly improved by C2,
and this improvement was significant comparing with the other six
predictions. Thus, C2 was the best-fitted model in general.

Fig. 5. (continued).
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3.1.3. Spatial applicability validation
The analysis on the spatial distribution of the accuracy rate,

missing rate, vacancy rate and IA in each city are shown in Fig. 5.
Seven simulated datasets can be classified into four categories ac-
cording to their performance. SSR and C4 were classified into the
first category, both of them having a high vacancy rate, low accu-
racy rate and very low missing rate. The second category is repre-
sented by C1, C3, C5 and C6. The characteristics of this category
include a vacancy rate that was slightly higher, especially for C1, C3

and north of the study area in C5 and C6. Most of the higher ac-
curacy rate cities appeared in the center of the study area. The third
category is represented by C2. Most of the cities had the highest
accuracy rate, and the accuracy rate in most of the cities exceeded
half the total samples. Almost no vacancy rate appeared in most of
the cities. In all the cities, the highest IA appeared in the four scales,
C1, C2, C3 and C5, and the frequencies of appearance of these scales
were 7%, 57%, 32% and 4%, respectively; these results indicate that
57% of the cities had the highest IA with the C2 model, coinciding

Fig. 6. Distributions and ranges of RMSE, MAE and MRE of each simulated result based on the enhanced regional model.
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Fig. 7. The seasonal variations of accuracy rate, missing rate, vacancy rate and IA for the seven sets of PM10 concentration predictions by the enhanced regional model.
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with the accuracy rate distribution. Thus, C2 had the advantage in
predicting PM10 concentrations in eastern China with the highest
accuracy rate and IA.

The distributions of RMSE, MAE and MRE with the regional
model are shown in Fig. 6. The lowest RMSE in C2 was found in 82%
of the cities. The lowest MAE in C2 was found in 89% of the cities in
easternChina.Moreover, theMRE calculated fromC2was the lowest
for all the cities. It can be found that C2 had the highest precision.

After reviewing all the performance evaluations above, C2 was
found to be the most suitable scale for eastern China, as it had the
lowest error. The advantage of the simulated result by C2, based on
the regional model, was universal for eastern China.

3.1.4. Temporal applicability validation
One year was divided into four seasons as spring (March, April

and May), summer (June, July and August), autumn (September,
October and November) and winter (December, January and

February). The accuracy rate, missing rate and vacancy rate calcu-
lated by the seven simulated results in each season are shown in
Fig. 7. The highest accuracy rates in the four seasons were all
appeared in C2. With the actual requirements of operational fore-
casting, a higher accuracy rate is preferred. C2 had the advantage of
predicting PM10 concentrations at any time of the year with slight
difference. The RMSE, MAE and MRE calculations also show that C2
had the highest precision (Fig. 8). Thus, PM10 concentration pre-
dicted by C2 based on the enhanced regional model was universal
and temporally stable.

Wavelet decomposition had an advantage in decomposing non-
stationary into stationary and regular signals with two components
(detail and approximation components), the higher the decompo-
sition level selected, the smoother and more sensitive the detailed
and approximation component signals could be generated. How-
ever, errors appeared during decomposition, and higher decom-
position levels always accompanied higher accumulated errors.
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Fig. 8. The seasonal variations of RMSE, MAE and MRE for the seven sets of PM10 concentration predictions.

Table 2
Summarization of the independent variables used in each model of the 23 cities.

Variable Stepwise
regression

C1 C2 C3 C4 C5 C6 Best fitted scale

AOD 87.0% 91.6% 95.8% 95.8% 95.8% 100% 100% 100%
Surface temperature 17.4% 54.2% 54.2% 58.3% 87.5% 87.5% 70.8% 45.8%
Potential temperature 17.4% 58.3% 62.5% 58.3% 75.0% 87.5% 79.2% 58.3%
Precipitable water 34.8% 58.3% 79.2% 91.7% 87.5% 95.8% 100% 75%
Pressure 0% 29.2% 50.0% 62.5% 75.5% 79.2% 70.8% 37.5%
Relative humidity 56.5% 83.3% 83.3% 87.5% 100% 95.8% 87.5% 83.3%
Sea level pressure 17.4% 45.8% 62.5% 91.7% 70.8% 83.3% 91.7% 54.2%
u-wind 34.8% 75% 83.3% 87.5% 91.7% 95.8% 91.7% 62.5%
v-wind 34.8% 50% 66.7% 87.5% 87.5% 95.8% 95.8% 66.7%
Specific humidity 17.4% 58.3% 75.0% 79.2% 91.6% 100% 87.5% 66.7%
Total cloud cover 21.7% 62.5% 79.2% 79.2% 95.8% 100% 95.8% 70.8%
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Thus, the selection of decomposition level was important in
application. In this study, the optimum decomposition level must
give consideration to both sensitivity and lowest error, while the
a¼ 22 level of decompositionwas the appropriate level to meet the
application of the PM10 concentration forecast for thewhole region.

3.2. Ensemble and enhanced PM10 concentration forecast model

PM10 concentrations in different cities may be affected by
different meteorological factors. Thus, a specified and enhanced
PM10 concentration prediction model was established for cities in
eastern China based on local weather characteristics.

With the enhanced forecast model described in Section 2, seven
sets of PM10 concentration predictions were obtained at each city.

Table 3
Descriptive statistics of PM10 concentrations predicted by the city enhanced model.

PM10 Minimum
(mg m�3)

Maximum
(mg m�3)

Mean
(mg m�3)

Standard
deviation

Kurtosis Skewness

Observed 0.012 0.600 0.095 0.056 10.488 2.259
SSR 0.027 0.281 0.106 0.041 0.641 0.878
C1 0.008 0.380 0.090 0.038 2.728 0.823
C2 0.001 0.640 0.095 0.059 10.625 2.245
C3 0.001 0.681 0.112 0.074 4.780 1.599
C4 0.006 0.643 0.117 0.067 5.061 1.681
C5 0.000 0.623 0.116 0.074 2.343 1.092
C6 0.001 0.641 0.117 0.072 2.452 1.363

Fig. 9. The distribution of accuracy rate, missing rate, vacancy rate and IA of PM10 concentrations predicted by the enhanced city model.
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The independent variables used in the seven predicted model of
each city were analyzed and summarized. Then, the accuracy rates
and precision of each set of the PM10 concentration predictionwere
compared among the cities. Finally, the optimum model was
selected for each city, and the final independent variables used in
the optimum model of each city were analyzed. The best-fitted
model in each city was combined in an ensemble to test the
integrity of PM10 concentration forecasting in eastern China. Then,
the improvements were analyzed with the application of the
ensemble model.

3.2.1. Independent variables used in each city model
Enhance models were built and seven sets of PM10 concentra-

tion predictions were acquired for each city. The independent

variables used in each model of each city were analyzed as shown
in Table 2. As for stepwise regression, 87% of the cities were use
AOD as an important variable, and 56.5% cities in eastern China
were use relative humidity for predicting the PM10 concentration.
Precipitable water, u-wind and v-wind were also used in most of
the cities. As for other six prediction models, we can found that
importance of AOD used for PM10 prediction was universal. Simi-
larly with stepwise regression model, in most cities the importance
of using relative humidity, precipitable water, u-wind and v-wind
for PM10 prediction were also reflected in the six models. However,
the important role of potential temperature, specific humidity and
total cloud cover in predicting PM10 concentration was also shown
with enhanced model. As potential temperature is an important
parameter of temperature, it is conservatively during the dry

Fig. 9. (continued).
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adiabatic process. However, it is no longer conservative when the
liquid water content in the atmosphere changed (Ertel, 1942). This
change mainly caused by the release of latent heat in the wet
precipitation process (Robison, 1989). Specific humidity reflected
the liquid water content in the atmospheric. Higher total cloud
cover usually appeared in rainy and cloudy day. All these were
indirectly affected the PM10 concentration in terms of humidity and
wet deposition. The humidity in the atmospheric will affect the
concentration of PM10. The meteorological factors which indirectly
affect the PM10 concentration can be reflected with the filtering
effect by wavelet analysis.

Overall, independent variables which had a great correlation
with PM10 concentration, such as AOD, relative humidity, precipi-
table water, u-wind, and v-wind, also play an important role in
PM10 concentration prediction in eastern China. It is accordance
with other studies (Li et al., 2011). Meteorological factors which

indirectly affect the PM10 concentration also play an important role
in eastern China, such as potential temperature, specific humidity
and total cloud cover.

3.2.2. Characteristics of the PM10 concentrations predicted with the
city model

The descriptive statistics of the 161 prediction datasets with the
enhanced model are shown in Table 3 and are compared with the
observed dataset. The range of PM10 concentration predictions by
SSR was comparatively small. The standard deviation was 0.041,
which was slightly lower than the observed dataset and implies
that the PM10 concentrations predicted by SSR had small variations.
The dataset distribution predicted by SSR was a slope with a kur-
tosis of 0.641. Thus, the PM10 concentrations predicted by SSR were
intensive, and it was difficult to forecast the abnormally high value
with signal stepwise regression. For the PM10 concentration

Fig. 10. Distributions and ranges of RMSE, MAE and MRE of each simulated result based on the enhanced city model.
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Fig. 11. Comparison of the precision of the ensemble and enhanced PM10 concentration forecast model-based city model with the precision of the best-fitted regional model.
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predicted by C2, the range and value were similar to the observed
dataset. Moreover, the distributions of the results predicted by C2
could reflect the distribution of the observed values on the whole,
and their datasets also had similar variations. The PM10 concen-
trations predicted by C1 were slightly intensive with a small range,
and the mean value was low, which implies that the distribution of
the data was stable and did not corresponding to the actual air
quality in the nature. The predicted results by C3, C4, C5 and C6
could be summarized as one category. These predicted results all
hadwide ranges, a higher mean value andwide variation. However,
the kurtosis and skewness were smaller than the observed dataset,
which implies that the number of abnormal data was more than
that in the observed dataset and that most of themwere not right-
skewed. Thus, PM10 forecasting by combined wavelet analysis and
stepwise regression has an advantage in predicting the abnormal
value, especially for C2.

3.2.3. The ensemble and enhanced PM10 concentration forecast
model

The accuracy rate, missing rate, vacancy rate and IA of the seven
sets of PM10 concentration predictions in each city were calculated
(Fig. 9).

The accuracy rate in 65.2% of the cities observed was improved
by the combined model. The prediction accuracy rates for Zibo and
Jining reached 90.8% and 90.8%, respectively. Based on the com-
bined model, the accuracy rate of predictions for Lianyungang,
Shaoxing, Hangzhou, Wenzhou, Xiamen and Shanghai had an in-
crease of 60.8%, 25.4%, 27.3%, 20.6%, 10.5% and 11.5%, respectively.
The results show that the enhanced model was able to improve the
accuracy rate of the PM10 forecast and that the improvements in
most of the cities were significant. When comparing the accuracy
rate and IA of the seven predicted models, it was found that highest
IA of each city was in accordance with the highest accuracy rate.

The precision evaluations by RMSE, MAE and MRE were also
calculated and are shown in Fig. 10. The scale distributions of the
lowest RMSE, MAR and MRE were coincident with each other with
highest accuracy rate. Then, the best fitted scales were selected for
each city by comparing the precision of each prediction model, and
theywere integrated as an ensemblemodel. In total, themainly used
variables in best fitted model were AOD, relative humidity, precipi-
table water, total cloud cover, specific humidity, v-wind and u-wind
(Table 2). The performances of the ensemble model were compared
with the regional model (Fig. 11). The accuracy of the ensemble
model was 83.5%. The accuracy rate had a 31% aggregation ratio by
the ensemble model when compared with the PM10 concentrations
predicted by C2 based on the regional model. When comparing the
IA, it was obvious that the IA was greatly improved, as the IA
increased to 0.855 in the ensemble model. Meanwhile, the RMSE,
MAE andMREsharply decreased to 0.033, 0.018 and0.2, respectively.
It can be inferred that the ensemble and enhanced PM10 concen-
tration forecast models for eastern China were useful for precision
improvement and that the improvement was very significant.

4. Conclusion

In this study, an ensemble and enhanced PM10 concentration
forecast model was formed based on stepwise regression and
wavelet analysis in eastern China.

Based on the regional scale, seven sets of PM10 concentration
predictions were obtained by the regional model. The calculation of
the accuracy rate based on the requirements of operational fore-
casting confirmed that the combined forecast model had an
advantage in PM10 concentration forecasting in eastern China.
Precision evaluations for the seven predicted results also showed
that the precision obtained by the combined model, especially in

scale 2, increased significantly. The advantage of C2 based on the
regional model was spatially and temporally universal.

Based on the city scale, the enhanced model for each city was
established in eastern China. Overall, the characteristics and dis-
tributions of the observed data can be reflected by C2 in each city.
The predicted data obtained by single stepwise regression were
intensively concentrated, which cannot reflect the actual air
pollution. The accuracy rate in 65.2% of the cities was improved
with the enhanced model.

An obvious improvement was achieved by the best-fitted
model, which was selected for each city. The ensemble of the
PM10 concentration forecast model with the highest accuracy rate
had the best precision. The ensemble and enhanced PM10 concen-
tration forecast model proved to be a new and effective model with
significant accuracy enhancement and precision improvement in
eastern China. In eastern China, AOD, relative humidity, precipita-
ble water, total cloud cover, specific humidity, v-wind and u-wind
were played an important role in PM10 concentration prediction in
most of the cities in eastern China.
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